Title: | Quantile Treatment Effects under the Regression Discontinuity Design |
---|---|
Description: | Provides comprehensive methods for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs, incorporating covariates and implementing robust bias correction methods of Qu, Yoon, Perron (2024) <doi:10.1162/rest_a_01168>. |
Authors: | Zhongjun Qu [aut, cph], Jungmo Yoon [aut, cre, cph] |
Maintainer: | Jungmo Yoon <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.1.0 |
Built: | 2025-04-02 05:06:28 UTC |
Source: | https://github.com/cran/QTE.RD |
Provides comprehensive methods for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs, incorporating covariates and implementing robust bias correction methods of Qu, Yoon, Perron (2024) doi:10.1162/rest_a_01168.
The package QTE.RD
includes four main functions:
rd.qte
estimates QTEs and provides uniform confidence bands, with or without covariates,
and with or without robust bias correction.
rdq.test
conducts tests for three hypotheses, related to the significance of
treatment effects, homogeneous treatment effects, and uniformly positive or negative treatment effects.
rdq.bandwidth
implements two bandwidth selection rules:
the cross-validation bandwidth and the MSE optimal bandwidth.
plot.qte
generates figures summarizing the treatment effects along with their confidence bands.
Zhongjun Qu [email protected]
Jungmo Yoon [email protected]
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
cv.bandwidth
implements the cross-validation bandwidth selection rule. The function rdq.bandwidth
calls this function to obtain the CV bandwidth.
cv.bandwidth(y, x, z, dz, x0, val, xl, order, bdy)
cv.bandwidth(y, x, z, dz, x0, val, xl, order, bdy)
y |
a numeric vector, the outcome variable. |
x |
the running variable. |
z |
additional covariates. |
dz |
the number of covariates z. |
x0 |
the cutoff point. |
val |
a set of candidate values for the CV bandwidth. |
xl |
if xl=0.5, the CV bandwidth is computed using the 50% of observations closest to |
order |
either 1 or 2. When order=1, a local linear regression is used, and when order=2, a local quadratic regression is used. |
bdy |
either 0 or 1. When bdy=1, the CV bandwidth is computed by treating x as a boundary point. Otherwise, x is treated as an interior point. |
A list with elements:
the selected CV bandwidth values at the median.
values of the criterion function evaluated at each of candidate value.
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) cv.bandwidth(y=y, x=x, z=NULL, dz=0, x0=0, val=c(1,2,3,4), xl=0.5, order=2, bdy=1) cv.bandwidth(y=y, x=x, z=NULL, dz=0, x0=0, val=c(1,2,3,4), xl=0.5, order=1, bdy=1)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) cv.bandwidth(y=y, x=x, z=NULL, dz=0, x0=0, val=c(1,2,3,4), xl=0.5, order=2, bdy=1) cv.bandwidth(y=y, x=x, z=NULL, dz=0, x0=0, val=c(1,2,3,4), xl=0.5, order=1, bdy=1)
Epanechnikov kernel
depa(xx, loc = 0, scale = 1)
depa(xx, loc = 0, scale = 1)
xx |
the evaluation points. |
loc |
the location parameter (normalized to be 0). |
scale |
the scale parameter (normalized to be 1). |
values.
depa(0) depa(seq(-1,1,by=0.05))
depa(0) depa(seq(-1,1,by=0.05))
make.band
constructs uniform confidence bands using the output of rdq.sim
.
The function rdq.band
calls this function to generates uniform bands.
make.band(n.sam,Dc.p,Dc.m,Dr.p,Dr.m,dz,cov,taus,hh,Qy.p,Qy.m, bias.p,bias.m,alpha,n.sim)
make.band(n.sam,Dc.p,Dc.m,Dr.p,Dr.m,dz,cov,taus,hh,Qy.p,Qy.m, bias.p,bias.m,alpha,n.sim)
n.sam |
the sample size. |
Dc.p |
simulated values from |
Dc.m |
simulated values from |
Dr.p |
simulated values from |
Dr.m |
simulated values from |
dz |
the number of covariates |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
taus |
a vector of quantiles of interest. |
hh |
the bandwidth values. |
Qy.p |
estimated conditional quantiles at |
Qy.m |
estimated conditional quantiles at |
bias.p |
estimated bias terms at |
bias.m |
estimated bias terms at |
alpha |
a number between 0 and 1, the desired significance level. |
n.sim |
the number of simulation repetitions. |
A list with elements:
QTE estimates without bias correction.
QTE estimates with bias correction.
uniform confidence band for QTE without bias correction.
uniform confidence band for QTE with robust bias correction.
standard errors for the bias-uncorrected QTE estimates.
standard errors for the bias-corrected QTE estimates. The values reflect the impact of the bias correction on the estimation precision.
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta=delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) ba = make.band(n,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm,dz=0,cov=0, taus=tlevel,hh,Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]), bias.p=bp$bias,bias.m=bm$bias,alpha=0.1,n.sim=200)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta=delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) ba = make.band(n,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm,dz=0,cov=0, taus=tlevel,hh,Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]), bias.p=bp$bias,bias.m=bm$bias,alpha=0.1,n.sim=200)
make.band.cq
constructs uniform confidence bands for conditional quantile processes as functions of tau for each side of the cutoff.
See make.band
as well. The function rdq.band
calls this function to generates uniform bands for conditional quantiles.
make.band.cq(n.sam,Dc.p,Dc.m,Dr.p,Dr.m,dz,cov,taus,hh,Qy.p,Qy.m, bias.p,bias.m,alpha,n.sim)
make.band.cq(n.sam,Dc.p,Dc.m,Dr.p,Dr.m,dz,cov,taus,hh,Qy.p,Qy.m, bias.p,bias.m,alpha,n.sim)
n.sam |
the sample size. |
Dc.p |
simulated values from |
Dc.m |
simulated values from |
Dr.p |
simulated values from |
Dr.m |
simulated values from |
dz |
the number of covariates. |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
taus |
a vector of quantiles of interest. |
hh |
the bandwidth values. |
Qy.p |
estimated conditional quantiles at |
Qy.m |
estimated conditional quantiles at |
bias.p |
estimated bias terms at |
bias.m |
estimated bias terms at |
alpha |
a number between 0 and 1, the desired significance level. |
n.sim |
the number of simulation repetitions. |
A list with elements:
conditional quantile estimates at (i.e., above the cutoff) without bias correction.
bias corrected conditional quantile estimates at .
conditional quantile estimates at (i.e., below the cutoff) without bias correction.
bias corrected conditional quantile estimates at .
uniform confidence band for conditional quantiles at
without bias correction.
uniform confidence band for conditional quantiles at
with robust bias correction.
uniform confidence band for conditional quantiles at
without bias correction.
uniform confidence band for conditional quantiles at
with robust bias correction.
standard errors of the conditional quantile estimates without bias correction
at .
standard errors of the conditional quantile estimates with robust
bias correction at .
standard errors of the conditional quantile estimates without bias correction
at .
standard errors of the conditional quantile estimates with robust
bias correction at .
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) ba.cq = make.band.cq(n,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm,dz=0,cov=0, taus=tlevel,hh,Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]), bias.p=bp$bias,bias.m=bm$bias,alpha=0.1,n.sim=200)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) ba.cq = make.band.cq(n,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm,dz=0,cov=0, taus=tlevel,hh,Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]), bias.p=bp$bias,bias.m=bm$bias,alpha=0.1,n.sim=200)
plot.qte
generates plots summarizing the QTE estimates and their uniform confidence bands, helping users visualize the results.
It also makes plots for conditional quantile processes for each side of the cutoff.
## S3 method for class 'qte' plot(x, ptype = 1, ytext = NULL, mtext = NULL, subtext = NULL, ...)
## S3 method for class 'qte' plot(x, ptype = 1, ytext = NULL, mtext = NULL, subtext = NULL, ...)
x |
an object of class "qte" or "summary.qte" produce by |
ptype |
either 1 or 2. Set ptype=1 for the QTE plots, and ptype=2 for the conditional quantile plots. The default value is 1. |
ytext |
the y-axis label. |
mtext |
the title of the plot. |
subtext |
the subtitles (used for the conditional quantile plots only). |
... |
optional arguments to plot |
plot(s) of the QTE estimates and uniform confidence bands.
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) plot(A) y.text = "test scores" m.text = "QTE and Uniform band" plot(A,ytext=y.text,mtext=m.text) A2 <- summary(A,alpha=0.1) plot(A2) z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1) A2 <- summary(A,alpha=0.1) y.text = "test scores" m.text = c("D=0","D=1") plot(A2,ytext=y.text,mtext=m.text) # conditional quantile plots n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) A2 <- summary(A,alpha=0.1) y.text = "test scores" m.text = "Conditional quantile functions" sub.text = c("D=0 group","D=1 group") plot(A2,ptype=2,ytext=y.text,mtext=m.text,subtext=sub.text)
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) plot(A) y.text = "test scores" m.text = "QTE and Uniform band" plot(A,ytext=y.text,mtext=m.text) A2 <- summary(A,alpha=0.1) plot(A2) z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1) A2 <- summary(A,alpha=0.1) y.text = "test scores" m.text = c("D=0","D=1") plot(A2,ytext=y.text,mtext=m.text) # conditional quantile plots n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) A2 <- summary(A,alpha=0.1) y.text = "test scores" m.text = "Conditional quantile functions" sub.text = c("D=0 group","D=1 group") plot(A2,ptype=2,ytext=y.text,mtext=m.text,subtext=sub.text)
Print a band.qte object
## S3 method for class 'band.qte' print(x, ...)
## S3 method for class 'band.qte' print(x, ...)
x |
object returned from |
... |
optional arguments. |
Print a bw.qte object
## S3 method for class 'bw.qte' print(x, ...)
## S3 method for class 'bw.qte' print(x, ...)
x |
object returned from |
... |
optional arguments. |
Print a qte object.
## S3 method for class 'qte' print(x, ...)
## S3 method for class 'qte' print(x, ...)
x |
object returned from |
... |
optional arguments. |
Print a summary.qte object
## S3 method for class 'summary.qte' print(x, ...)
## S3 method for class 'summary.qte' print(x, ...)
x |
object returned from |
... |
optional arguments. |
Print a test.qte object
## S3 method for class 'test.qte' print(x, ...)
## S3 method for class 'test.qte' print(x, ...)
x |
object returned from |
... |
optional arguments. |
rd.qte
is the main function of the QTE.RD package. If cov=1, it estimates QTE for each subgroup defined by covariates.
If cov=0, it estimate QTE without covariates. If bias=1, it corrects the bias in QTE estimates and obtains the robust
confidence band and if bias=0, no bias correction is implemented.
rd.qte(y, x, d, x0, z0=NULL, tau, bdw, cov, bias)
rd.qte(y, x, d, x0, z0=NULL, tau, bdw, cov, bias)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. For example, if a female dummy z is included, z0 = 1 may indicate the female subgroup. |
tau |
a vector of quantiles of interest. |
bdw |
the bandwidth value(s). If 'bdw' is a scalar, it is interpreted as the
bandwidth for the median. See the function |
cov |
either 0 or 1. Set cov=1 when covariates are present in the model; otherwise set cov=0. |
bias |
either 0 or 1. If bias=1, the QTE estimate is bias corrected and the robust confidence band in Qu, Yoon, and Perron (2024) is produced. If bias=0, no bias correction is implemented. |
A list with elements:
QTE estimates.
uniform confidence band for QTE. If bias=1, the band is robust capturing the effect of the bias correction. If bias=0, no bias correction is implemented.
standard errors for each quantile level. If bias=1, its value captures the effect of the bias correction. If bias=0, no bias correction is implemented.
conditional quantile estimates on the right side of (or for the
group).
conditional quantile estimates on the left side of (or for the
group).
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
Keming Yu and M. C. Jones (1998), “Local Linear Quantile Regression,” Journal of the American Statistical Association, 93(441), 228–237; https://doi.org/10.2307/2669619
# Without covariate n <- 500 x <- runif(n,min=-4,max=4) d <- (x > 0) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel <- seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) # (continued) With covariates z <- sample(c(0,1),n,replace=TRUE) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1)
# Without covariate n <- 500 x <- runif(n,min=-4,max=4) d <- (x > 0) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel <- seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) # (continued) With covariates z <- sample(c(0,1),n,replace=TRUE) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1)
rdq
estimates QTE under the RDD with or without covariates. This function is used by rd.qte
to generate QTE estimates.
rdq(y, x, d, x0, z0 = NULL, tau, h.tau, cov)
rdq(y, x, d, x0, z0 = NULL, tau, h.tau, cov)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. For example, if a female dummy is included, z0 = 1 may indicate the female subgroup. |
tau |
a vector of quantiles of interest. |
h.tau |
the bandwidth values (specified for each quantile level). |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
A list with elements:
QTE estimates.
conditional quantile estimates on the right side of (or for the D=1 group).
conditional quantile estimates on the left side of (or for the D=0 group).
quantile regression coefficients on the right side of .
quantile regression coefficients on the left side of .
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) hh = rep(2,length(tlevel)) rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) rdq(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,h.tau=hh,cov=1)
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) hh = rep(2,length(tlevel)) rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) rdq(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,h.tau=hh,cov=1)
rdq.band
produces uniform confidence bands for QTEs with and without bias correction. This function is used by rd.qte
to generate uniform bands.
rdq.band(y, x, d, x0, z0 = NULL, tau, bdw, cov, alpha)
rdq.band(y, x, d, x0, z0 = NULL, tau, bdw, cov, alpha)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. For example, if a female dummy is included, z0 = 1 may indicate the female subgroup. |
tau |
a vector of quantiles of interest. |
bdw |
the bandwidth value(s). If 'bdw' is a scalar, it is interpreted as the bandwidth for the median. The bandwidths for the rest of the quantiles are computed automatically using the formula in Yu and Jones (1998). If it is a vector with the same dimension as 'tau', the function will use these values for the respective quantiles accordingly. |
cov |
either 0 or 1. Set cov=1 when covariates are present in the model; otherwise set cov=0. |
alpha |
a number between 0 and 1, the desired significance level. |
QTE estimates without bias correction.
bias corrected QTE estimates.
uniform confidence band for QTE without bias correction.
uniform confidence band for QTE with robust bias correction.
standard errors for each quantile level for estimates without bias correction.
standard errors for each quantile level for estimates with robust bias correction.
uniform confidence band for the conditional quantile estimates on the right side of the cutoff, without bias correction.
uniform confidence band for the conditional quantile estimates on the right side of the cutoff, robust to the bias correction.
uniform confidence band for the conditional quantile estimates on the left side of the cutoff, without bias correction.
uniform confidence band for the conditional quantile estimates on the left side of the cutoff, robust to the bias correction.
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
Keming Yu and M. C. Jones (1998), “Local Linear Quantile Regression,” Journal of the American Statistical Association, 93(441), 228–237; https://doi.org/10.2307/2669619
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) D = rdq.band(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,alpha=0.1) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) D = rdq.band(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,alpha=0.1)
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) D = rdq.band(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,alpha=0.1) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) D = rdq.band(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,alpha=0.1)
rdq.bandwidth
implements two bandwidth selection rules and obtains the cross-validation (CV) bandwidth and the MSE optimal bandwidth.
rdq.bandwidth(y, x, d, x0, z0=NULL, cov, cv, val,hp=NULL,pm.each=1, bdy=1,p.order=1,xl=0.5)
rdq.bandwidth(y, x, d, x0, z0=NULL, cov, cv, val,hp=NULL,pm.each=1, bdy=1,p.order=1,xl=0.5)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. |
cov |
either 0 or 1. Set cov=1 when covariates are present in the model; otherwise set cov=0. |
cv |
either 0 or 1. When cv=1, both the CV and MSE optimal bandwidths are produced. When cv=0, the MSE optimal bandwidth is produced. |
val |
a set of candidate values for the CV bandwidth. |
hp |
a pilot bandwidth to estimate nuisance parameters for the MSE optimal bandwidth. It will be used only if cv=0. If cv=1, the CV bandwidth will be used as the pilot bandwidth to compute the MSE optimal bandwidth. |
pm.each |
either 0 or 1. When pm.each=1, the CV bandwidths for each side of the cutoff will be obtained separately. |
bdy |
either 0 or 1. When bdy=1, the CV bandwidth uses the boundary point procdure. |
p.order |
either 1 or 2. When p.order=1, a local linear regression is used, and when p.order=2, a local quadratic regression is used. |
xl |
if xl=0.5, the CV bandwidth use the 50% of observations closest to |
A list with elements:
the selected CV bandwidth at the median.
the MSE optimal bandwidth at the median from the right side of .
the MSE optimal bandwidth at the median from the left side of .
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) rdq.bandwidth(y=y,x=x,d=d,x0=0,z0=NULL,cov=0,cv=1,val=(1:4)) rdq.bandwidth(y=y,x=x,d=d,x0=0,z0=NULL,cov=0,cv=0,val=(1:4),hp=2) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) rdq.bandwidth(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),cov=1,cv=1,val=(1:4),bdy=1,p.order=1)
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) rdq.bandwidth(y=y,x=x,d=d,x0=0,z0=NULL,cov=0,cv=1,val=(1:4)) rdq.bandwidth(y=y,x=x,d=d,x0=0,z0=NULL,cov=0,cv=0,val=(1:4),hp=2) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) rdq.bandwidth(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),cov=1,cv=1,val=(1:4),bdy=1,p.order=1)
rdq.bias
estimates the bias terms using the local quadratic quantile regression.
rdq.bias(y, x, dz, x0, z0, taus, h.tau, h.tau2, fx, cov)
rdq.bias(y, x, dz, x0, z0, taus, h.tau, h.tau2, fx, cov)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
dz |
the number of covariates. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. |
taus |
a vector of quantiles of interest. |
h.tau |
the bandwidth values (specified for each quantile level), for estimating conditional quantiles. |
h.tau2 |
the bandwidth values for the local quadratic quantile regression, for estimating the bias terms. |
fx |
conditional density estimates. |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
A list with elements:
the bias estimates.
the estimate of the term. See Qu, Yoon, and Perron (2024).
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) hh = rep(2,length(tlevel)) fe = rdq.condf(x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0) be = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fe$ff[(d==1),],cov=0)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) hh = rep(2,length(tlevel)) fe = rdq.condf(x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0) be = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fe$ff[(d==1),],cov=0)
rdq.condf
estimates conditional density functions by using the differencing method.
rdq.condf(x, Q, bcoe, taus, taul, delta, cov)
rdq.condf(x, Q, bcoe, taus, taul, delta, cov)
x |
a vector (or a matrix) of covariates. |
Q |
a vector of estimated conditional quantiles. |
bcoe |
quantile regression coefficient estimates. |
taus |
a vector of quantiles of interest. |
taul |
a vector of quantiles used for the conditional density estimation. It is needed to estimate the tail parts of conditional density functions more precisely. |
delta |
bandwidths for estimating the conditional density. |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
conditional density function estimates
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) hh = rep(2,length(tlevel)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0) delta = 0.186 fe = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=0.5,taul=tlevel,delta=delta,cov=0)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) hh = rep(2,length(tlevel)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0) delta = 0.186 fe = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=0.5,taul=tlevel,delta=delta,cov=0)
rdq.sim
produces iid draws from the asymptotic distribution of the conditional quantile process estimate.
rdq.sim(x, d, x0, z0, dz, cov, tt, hh, hh2, fxp, fxm, n.sim)
rdq.sim(x, d, x0, z0, dz, cov, tt, hh, hh2, fxp, fxm, n.sim)
x |
a vector (or a matrix) of covariates. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. |
dz |
the number of covariates. |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
tt |
a vector of quantiles. |
hh |
the bandwidth values (specified for each quantile level). |
hh2 |
the bandwidth values for the local quadratic quantile regression. |
fxp |
conditional density estimates on the right side of |
fxm |
conditional density estimates on the left side of |
n.sim |
the number of simulation repetitions. |
A list with elements:
realizations from the asymptotic distribution of the conditional quantile process, from the right side of .
realizations from the asymptotic distribution of the conditional quantile process, from the left side of .
realizations from the asymptotic distribution of the bias corrected conditional quantile process, from the right side of .
realizations from the asymptotic distribution of the bias corrected conditional quantile process, from the left side of .
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200)
rdq.test
provides testing results for hypotheses on the treatment effects concerning (i) treatment significance, (ii) homogeneity of effects over quantiles,
and (iii) positive or negative dominance hypothesis.
rdq.test(y,x,d,x0,z0=NULL,tau,bdw,cov,bias,alpha,type,std.opt=1)
rdq.test(y,x,d,x0,z0=NULL,tau,bdw,cov,bias,alpha,type,std.opt=1)
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. For example, if a female dummy is included, z0 = 1 indicates the female subgroup. |
tau |
a vector of quantiles of interest. |
bdw |
the bandwidth value(s). If 'bdw' is a scalar, it is interpreted as the bandwidth for the median. The bandwidths for the rest of the quantiles are computed automatically using the formula in Yu and Jones (1998). If it is a vector with the same dimension as 'tau', the function will use these values for the respective quantiles accordingly. |
cov |
either 0 or 1. Set cov=1 when covariates are present in the model; otherwise set cov=0. |
bias |
either 0 or 1. If bias=1, the QTE estimate is bias corrected and the robust confidence band in Qu, Yoon, and Perron (2024) is produced. If bias=0, no bias correction is implemented. |
alpha |
a number between 0 and 1, the desired significance level. When alpha=0.1, one will get a 90% uniform band. |
type |
a value in 1–4. Set type to 1 to test the null hypothesis of a zero treatment effect against the alternative hypothesis of significant treatment effects; set type to 2 to test the null hypothesis of homogeneous treatment against heterogeneous treatment effects; set type to 3 to test the null hypothesis of uniformly non-negative treatment effects against the presence of negative effects; and set type to 4 to test the null hypothesis of uniformly non-positive treatment effects against the presence of positive effects at some quantiles. |
std.opt |
either 0 or 1. If std.opt=1, the test statistic is standardized so that the variance is equalized across quantiles; if std.opt=0, the test is not standardized. |
A list with elements:
test statistics.
critical values.
p values.
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) B = rdq.test(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1,alpha=c(0.1,0.05),type=c(1,2,3)) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) B = rdq.test(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1, alpha=c(0.1,0.05),type=c(3,4))
# Without covariate n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) B = rdq.test(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1,alpha=c(0.1,0.05),type=c(1,2,3)) # (continued) With covariates z = sample(c(0,1),n,replace=TRUE) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) B = rdq.test(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1, alpha=c(0.1,0.05),type=c(3,4))
run.test
performs hypothesis testing. The function rdq.test
calls this function to run tests.
run.test(n.sam,dz,taus,hh,Dc.p,Dc.m,Dr.p,Dr.m,Qy.p,Qy.m,bias.p,bias.m, cov,bias,alpha,n.sim,test.type,std.opt)
run.test(n.sam,dz,taus,hh,Dc.p,Dc.m,Dr.p,Dr.m,Qy.p,Qy.m,bias.p,bias.m, cov,bias,alpha,n.sim,test.type,std.opt)
n.sam |
the sample size. |
dz |
the number of covariates. |
taus |
a vector of quantiles of interest. |
hh |
the bandwidth values. |
Dc.p |
simulated values from |
Dc.m |
simulated values from |
Dr.p |
simulated values from |
Dr.m |
simulated values from |
Qy.p |
estimated conditional quantiles at |
Qy.m |
estimated conditional quantiles at |
bias.p |
estimated bias terms at |
bias.m |
estimated bias terms at |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
bias |
either 0 or 1. If bias=1, the QTE estimate is bias corrected and the robust confidence band in Qu, Yoon, and Perron (2024) is produced. If bias=0, no bias correction is implemented. |
alpha |
a number between 0 and 1, the desired significance level. |
n.sim |
the number of simulation repetitions. |
test.type |
a value in 1–4. Set type to 1 to test the null hypothesis of a zero treatment effect against the alternative hypothesis of significant treatment effects; set type to 2 to test the null hypothesis of homogeneous treatment against heterogeneous treatment effects; set type to 3 to test the null hypothesis of uniformly non-negative treatment effects against the presence of negative effects; and set type to 4 to test the null hypothesis of uniformly non-positive treatment effects against the presence of positive effects at some quantiles. |
std.opt |
either 0 or 1. If std.opt=1, the test statistic is standardized so that the variance is equalized across quantiles; if std.opt=0, the test is not standardized. |
A list with elements:
test statistics.
critical values.
p values.
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) bt <- run.test(n,dz=0,taus=tlevel,hh,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm, Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]),bias.p=bp$bias,bias.m=bm$bias, cov=0,bias=1,alpha=0.1,n.sim=200,test.type=1,std.opt=1)
n = 500 x = runif(n,min=-4,max=4) d = (x > 0) y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) tlevel2 = c(0.05,tlevel,0.95) hh = rep(2,length(tlevel)) hh2 = rep(2,length(tlevel2)) sel = tlevel2 %in% tlevel ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0) delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05) fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta,cov=0) fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta,cov=0) bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0) bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0) sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200) bt <- run.test(n,dz=0,taus=tlevel,hh,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm, Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]),bias.p=bp$bias,bias.m=bm$bias, cov=0,bias=1,alpha=0.1,n.sim=200,test.type=1,std.opt=1)
summary.qte
returns uniform confidence bands and standard errors for QTE estimates.
## S3 method for class 'qte' summary(object, alpha, ...)
## S3 method for class 'qte' summary(object, alpha, ...)
object |
It is an object of class "qte" produced by |
alpha |
a number between 0 and 1, the desired significance level. For example, when alpha=0.1, one will get a 90% uniform band. |
... |
optional arguments. |
A list with elements:
QTE estimates.
uniform confidence band for QTE. If bias=1, the band is robust capturing the effect of the bias correction. If bias=0, no bias correction is implemented.
standard errors for each quantile level. If bias=1, its value captures the effect of the bias correction. If bias=0, no bias correction is implemented.
conditional quantile estimates on the right side of (or for the
group).
conditional quantile estimates on the left side of (or for the
group).
uniform confidence band for conditional quantiles on the right side of .
uniform confidence band for conditional quantiles on the left side of .
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Zhongjun Qu and Jungmo Yoon (2019), "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business and Economic Statistics, 37(4), 625–647; https://doi.org/10.1080/07350015.2017.1407323
# Without covariate n <- 500 x <- runif(n,min=-4,max=4) d <- (x > 0) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) A2 <- summary(A,alpha=0.1) # (continued) With covariates z <- sample(c(0,1),n,replace=TRUE) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1) A2 <- summary(A,alpha=0.1)
# Without covariate n <- 500 x <- runif(n,min=-4,max=4) d <- (x > 0) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n) tlevel = seq(0.1,0.9,by=0.1) A <- rd.qte(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,bdw=2,cov=0,bias=1) A2 <- summary(A,alpha=0.1) # (continued) With covariates z <- sample(c(0,1),n,replace=TRUE) y <- x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n) A <- rd.qte(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,bdw=2,cov=1,bias=1) A2 <- summary(A,alpha=0.1)